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In a previous companion paper, we presented the details of our algorithms for
performing nonlocal density functional theory calculations in complex two- and
three-dimensional geometries. We discussed scaling and parallelization, but did not
discuss other issues of performance. In this paper, we detail the precision of our meth-
ods with respect to changes in the mesh spacing. This is a complex issue because
given a Cartesian mesh, changes in mesh spacing will result in changes in surface
geometry. We discuss these issues using a series of rigid solvated polymer models
including square rod polymers, cylindrical polymers, and bead–chain polymers. In
comparing the results of the various models, it becomes clear that surface curva-
ture or roughness plays an important role in determining the strength of structural
solvation forces between interacting solvated polymers. The results in this paper
serve as benchmarks for future application of these algorithms to complex fluid
systems. c© 2000 Academic Press
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1. INTRODUCTION

Fluids near surfaces or macromolecules have properties (viscosity, density, etc.) that differ
significantly from the bulk properties of these fluids. Predicting the structure of fluids in
confined spaces is ultimately critical for understanding adsorption in [1], solvation forces on
[2, 3], and wetting [4] of complex surfaces [5, 6], macromolecules, and porous materials [7].

1 To whom correspondence should be addressed.
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In Part I of this series [8], details of a novel numerical implementation of an accurate non-
local density functional theory (DFT) were presented. These algorithms have enabled calcu-
lation of density distributions of fluids near complex surfaces that require two-dimensional
(2D) or 3D solutions. In this paper, we focus on the precision of the calculations using
solvated polymers to motivate the discussion. Calculations based on several models are
presented to address a variety of numerical issues that may affect the results. These issues
include mesh refinement and precision, internal consistency (sum rules), and geometry
change with mesh refinement. These issues are addressed in detail in Sections 3 and 4 using
2D polymer models. In Section 5, the results from 3D calculations are presented.

The particular nonlocal DFT we apply was detailed in Part I. Briefly, the DFT is based
on the functional minimization of the grand free energy,Ä, with respect to the density
distributions,ρ(r), at constant temperature,T , and fluid chemical potential,µ [9]:

(
δÄ

δρ(r)

)
T,µ

= 0. (1)

The particular free energy functional,Ä[ρ̄(r)] we use was developed by Rosenfeld [10].
The principle outputs of the DFT calculation are the surface free energy,Äs, the solvation

force, f, and the excess adsorption,0. Boldface indicates a vector withf≡ ( f x, f y, f z).
These parameters are defined and calculated via

Äs = Ä[ρ(r)] −Ä[ρb], (2)

fs =
∫
ρ(r s)n dr s, (3)

and

0 =
∫

[ρ(r)− ρb] dr , (4)

whereρb is the bulk fluid density associated with the knownµ,
∫

dr s indicates a surface
integral,n is the unit normal to the surface, and

∫
dr indicates a volume integral. The net

force on a given surface is found by integrating over the fluid densities in contact with the
surface (Eq. (3)). Since the integral is taken over the entire surface, the solvation force is
strictly zero when a surface is isolated in solution or when two surfaces are far apart. It
should be noted that the solvation force as expressed in Eq. (3) has already been specialized
to the hard potential systems we consider in this paper.

One way to test the precision of the calculations is to test the self-consistency of the solu-
tions via sum rules [9]. While there are a variety of sum rules that apply to inhomogeneous
fluids, the one we consider here is the force sum rule. Assuming that the line of centers
between two surface lies in thex-direction, the force in this direction is

f x
s =

∫
ρ(r s)nx dr s = −∂Ä

s

∂D
, (5)

whereD is the separation between the two surfaces.
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FIG. 1. A schematic of the three solvated polymer models of interest. Square rod polymers are shown on the
left, cylindrical polymers are shown in the center, and bead–chain polymers are shown on the right.

2. POLYMER MODELS

As in Part I we restrict the current discussion to hard sphere fluids in contact with hard
surfaces. In the cases we discuss here, the surfaces are designed to model rigid polymers.
More specifically, the surfaces are small in two dimensions, but long and regular in the
third. The stiffness of these models is not a realistic representation of many polymers, but
there are some important exceptions. One example is deoxyribonucleic acid (DNA). The
double helix of the DNA causes this important polymer to be quite rigid. As a result, DNA
has often been treated from a modeling point of view as a rigid polymer [11, 12].

The specific models we present here are square rod polymers, cylindrical polymers, and
bead–chain polymers. The three types of models are sketched in Fig. 1. While the solvation
of square rod and cylindrical polymer models may be studied in 2D, the bead–chain polymer
requires a 3D calculation. Sketches of the 2D and 3D computational domains are shown in
Fig. 2. In the 2D cases, boundaries at bothx= Lx andy= L y are reflective (see Part I for
a precise definition). In the 3D calculations they= L y, z= 0, andz= Lz boundaries are
reflective. All remaining boundaries assume that the fluid surrounding the computational
domain hasρ= ρb. Given the reflective boundaries, the computational domain is clearly
one quarter of the relevant physical domain, and the physical domain is composed of two
polymer strands suspended in the hard sphere fluid.

3. SQUARE ROD POLYMERS

In Part I, we outlined a variety of numerical algorithms for solving the Euler–Lagrange
equations of the DFT. We showed how such algorithms perform as a function of total
domain size and mesh spacing on a Cartesian mesh. However, we did not discuss issues
of precision. In this section we present sensitivity studies and self-consistency tests with
respect to mesh spacing for the square rod polymer. This model is unique in that the geometry
of the polymer is invariant with respect to changes in mesh spacing. One example of the
density distribution in the solvation shell around two square rod polymers is shown in Fig. 3,
where the surface separation isD/σ = 1.5. In all that follows, the mesh spacing is denoted
1x with the understanding that this mesh spacing corresponds to the mesh zone adjacent
to the polymer surface (see Part I for a description of the mesh coarsening).

The surface free energy, thex-component of the solvation force, and the excess adsorption
are shown in Fig. 4, as a function of both the surface separation of two polymer strands
and the mesh spacing. In all cases,1x varies from 0.25σ to 0.025σ , whereσ is the fluid
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FIG. 2. Sketches of the computational domains used for (A) the 2D square-rod polymer, (B) the 2D cylindrical
polymer, and (C) the 3D bead–chain polymer calculations. The minimum surface separation is indicated byD
while the center–center separation is indicated byH . The shaded regions in (A) and (B) indicate exclusion zones
of width 0.5σ , where no fluid is found due to hard core repulsions. The exclusion zones are omitted from (C) for
clarity.

FIG. 3. The density (ρσ 3) distribution in the solvation shell around two square rod polymers, whereρbσ
3=

0.65 andD/σ = 1.5.
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FIG. 4. (A) The shifted surface free energy per unit area, [Äs(D) − Äs(∞)]/A, whereÄs(∞)≈Äs(6σ).
(B) Thex-component of the solvation force,f ≡ f x

s , per unit area. (C) The excess adsorption per unit area. Each
panel shows results for mesh densities ranging from1x= 0.025σ to1x= 0.25σ , as indicated in the legend. The
normalizing area is the total surface area (i.e.,A= 12σ × L) of one rod. The values ofÄs(6σ)σ 2/AkT used for
(A) were 1.87, 1.88, 1.92, 1.95, 2.01, and 2.15 for1x/σ = 0.025, 0.05, 0.1, 0.125, 0.166̄, and 0.25, respectively.

molecular diameter. The solvation force iny is strictly zero due to symmetry and thus is not
shown. The surface free energy is shifted by the infinite separation limit. When shifted, the
surface free energy is equivalent to the potential of mean force acting between the rods [13,
14]. Thus the global minimum in Fig. 4A yields a prediction of the equilibrium separation
of the polymer strands.

All of the parameters in Fig. 4 show oscillations of periodσ that reflect solvent packing
constraints near the surfaces. The discontinuity that arises atD/σ = 1 is the result of osmotic
exclusion of solvent from the gap between the surfaces. Since our fluid is a hard sphere
fluid, no fluid molecules will fit in the gap when it is smaller than 1σ in size.

It should be noted that the discontinuity atD/σ = 1 is a slope discontinuity for the free
energy and adsorption while it is a value discontinuity for the force. AsD/σ→ 1 from
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FIG. 5. (A) The surface free energy per unit area,Äs/A. (B) Thex-component of the solvation force,f ≡ f x
s .

(C) The excess adsorption per unit area from 1D calculations of a hard sphere fluid confined between hard parallel
planar surfaces.

above, there will be nonzero densities at the nodesx= Lx andy≥ L y− 1.5σ (see Fig. 2).
However, the density in the elements surrounding those nodes is strictly zero. Thus while
these nonzero densities contribute to the surface integral that yields the force, they do not
contribute to the volume integrals of the surface free energy and adsorption. This point is
illustrated more precisely in Fig. 5, where the results of 1D calculations (based on mesh sizes
as small as1x/σ = 0.00025) of a fluid confined between smooth parallel planar surfaces
are detailed.

There is good agreement among the results of all the mesh densities shown in Fig. 4.
The largest errors are found at the peaks in the force curve (D/σ = 1, 2, . . .), where
f x
s is underestimated andÄs is overestimated. The forces atD/σ = 1 are not shown in

Fig. 4B. They aref x
s σ

3/AkT= 89.518, 89.520, 89.490, 89.469, 89.429, and 89.208 for
1x= 0.025, 0.05, 0.1, 0.125, 0.166̄, and 0.25.

A test of the force sum rule for 0.025≤1x≤ 0.25 can be found in Fig. 6. The partial
derivative,∂Äs/∂D, was estimated numerically with central finite differences around the
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FIG. 6. A comparison of the two methods for calculating the force where the solid lines indicatefs=
∫ρ(r s) dr s and the symbols indicatefs=−∂Äs/∂D. The mesh density in the zone nearest the surface varies with
1x= 0.025 (A),1x= 0.05 (B),1x= 0.1 (C),1x= 0.125 (D),1x= 0.166 (E), and1x= 0.25 (F). The dotted
line in (B)—(F) is the1x= 0.025 result usingfs=∫ρ(r s) dr s.

points D+ 0.51D, where1D= 21x is the spacing between points in Fig. 4. Figure 6
confirms that the free energy derivative in Eq. (5) gives a good estimate of the force in all
cases except1x= 0.25σ , where the spacing between successive data points (1D= 0.5σ )
is too large for accurate numerical derivatives.

4. CYLINDRICAL POLYMERS

We now turn to the cylindrical polymers where the geometry of the polymer surface
changes as the mesh is refined. As was discussed in Part I, the surfaces in our calculations
are defined by identifying each element in the solution domain as being either entirely in
the fluid or entirely in one of the surfaces in the calculation. Since our mesh is Cartesian, the
curved surfaces are staircased, and the surface geometry will depend on mesh spacing. Thus
it is necessary to determine how sensitive the free energy, force, and adsorption predictions
are to these geometry changes.

The calculations presented here are based on the computational domain of Fig. 2B. An
example of the fluid density in one quadrant of the solvation shell around two interacting
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FIG. 7. The density (ρσ 3) distribution in the solvation shell around two square rod polymers, where
ρbσ

3= 0.65 and the surface separation at the point of closest approach (y= L y) is D/σ = 1.5.

cylinders is shown in Fig. 7. Note that the densities at the surface of the cylinder are now
quite jagged due to the staircasing. Contrast this with the smooth density profiles at the
surface of the square rod polymer in Fig. 3.

Figure 8 showsÄs, fs, and0 as a function of the surface separation of the cylinders.
Again, all of these parameters have oscillations on the period ofσ . However, the amplitudes
of the oscillations in fs andÄs are reduced in comparison with the square rods. This
reduction in the solvation oscillations results from the surface curvature of the cylinder.

One striking feature of Fig. 8 is the jagged nature of the force whenD/σ ≤ 1. These
jagged peaks have the same origin as the single discontinuity observed for the square rods.
However, in the case of the cylinders, all separationsD/σ <1 can show the discontinuity
because there is some element on the cylindrical surface that has a separation of exactly 1σ

with the corresponding element on the opposing surface.
The slope discontinuities observed in Figs. 4B and 4C atD/σ = 1 are not obviously

present in either theÄs or0 curves in Figs. 8B and 8C. However, both of these parameters
are more sensitive to mesh density than was observed for the square rods. For example,
0 is underestimated atD/σ ≈ 0.5 while theÄs is overestimated atD/σ ≈ 0.8 and 1.8
for the coarser meshes. In addition the0 curves in Fig. 8C required shifting for clarity of
presentation, as detailed in the figure caption.

Once again, the force sum rule was applied to test the self-consistency of the calculations.
The free energy derivatives (see Eq. (5)) are shown in Fig. 9 for a variety of mesh spacings.

Unlike the direct calculation (Fig. 8B), the free energy derivatives are not jagged for
D/σ ≤ 1. Rather, all the different grids (1x≤ 0.166̄) give surprisingly consistent results.
Surface free energies on any of these grids may therefore be used to obtain an estimate
of the force for an infinitely refined mesh. Clearly, the surface integral in Eq. (5) is more
sensitive to geometry changes with mesh spacing than are the volume integrals that are used
to calculateÄs.

Returning to the results in Fig. 8B, the magnitude of the jagged peaks atD/σ ≤ 1 de-
creases as1x decreases. In the limit1x→ 0, we would expect these jagged peaks to dis-
appear. One way to estimate this limit is to take the force to be the mean offs(d/σ→ 1+)
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FIG. 8. Same as Fig. 4 except for cylindrical rods. The normalizing area is the total surface area of one cylinder
(i.e., A= 12σ × L). The values ofÄs(6σ)σ 2/AkT used for (A) were 1.46, 1.46, 1.47, 1.61, 1.48, and 1.94 for
1x/σ = 0.025, 0.05, 0.1, 0.125, 0.166̄, and 0.25, respectively. The excess adsorptions,0, were all shifted to the
limit of the1x= 0.025 data for clarity of presentation. Before shifting, the limiting values of the adsorptions were
0σ 2/A=−0.197,−0.191,−0.212,−0.171, and−0.223 for1x= 0.05, 0.1, 0.125, 0.166̄, and 0.25.

FIG. 9. A comparison of the solvation force,fs=−∂Äs/∂D, as a function of the surface separationD
between parallel cylinders for a variety of grid spacings.
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FIG. 10. The solvation force as function of the surface separation where the force is calculated with
fs=∫ρ(r s) dr s, but for separations ofD/σ ≤ 1, the force is estimated withf = 0.5 ∗ [ fs(d/σ→ 1+)+
fs(d/σ→ 1−)].

and fs(d/σ→ 1−), whered is the surface separation associated with each surface element.
Mean force estimates for several mesh spacings are shown in Fig. 10. For1x/σ = 0.025
and 0.05, there is good agreement between the mean force and the free energy derivative.
For larger1x, the maximum in the first peak is overestimated. However, in all cases, this
estimate of the force is considerably closer to the infinitely refined mesh result than are the
jagged forces in Fig. 8B.

5. BEAD–CHAIN POLYMERS

Finally, we consider the bead–chain polymers. For all the calculations presented below,
the mesh spacing in the finest zone is taken to be1x= 0.125σ . The computational domain
in x includes two bead-chain polymer strands, as is sketched in Fig. 2C.

The bead–chain polymer model in Fig. 1 is qualitatively different from the square rods
and cylindrical polymers in that it is nonuniform in the axial direction. Thus, the solvation
structure is complex in 3D. Figures 11 and 12 show densities in the solvation shells sur-
rounding two bead-chain polymers in the planesz= 0 andz= Lz when the center to center
separation isH = 4.5σ . The z= 0 slice corresponds the the point where two beads on a
given chain meet and the surface separation isD= H . Thez= Lz slice is thez plane where
the surface separation is smallest,D= H − 3σ . While the peak densities in thez= Lx plane
are comparable to square rod polymers and cylindrical polymers (see Figs. 3 and 7), the
peak densities in thez= 0 plane are significantly higher.

The large densities in Fig. 11 arise from the large fluid–surface interactions that occur
in the annulus around the point where two neighboring beads on a single chain meet. The
fluids in these regions can be considered to beboundalthough they are not chemically
bonded to the polymer.

The complexity in the solvation structure has a significant effect onfs, Äs, and0, as
shown in Fig. 13. While all the parameters show solvation oscillations, the amplitudes
of the oscillations are reduced in comparison with both the parallel cylinders and square
rods. Thus, the additional surface roughness is a destructive factor with respect to solva-
tion forces. Surface roughness is a subtle issue that is beyond the scope of the current
discussion; however, it has been shown that surface roughness may be either destructive (as
in the present case) or constructive with respect to solvation forces between rough planar
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FIG. 11. A slice at z= 0 of the density (ρσ 3) distribution in the solvation shell around two bead–chain
polymers whereρbσ

3= 0.63 and the center–center separation of the strands isH/σ = 4.5.

surfaces [15]. Thus one might obtain a different result if the size of the beads were increased
or decreased.

It should be noted that we were not able to obtain a solution atH/σ = 3.25σ for the
bead–chain model. We observed that a numerical instability arises when the large densities
found between neighboring beads on the same chain (atz= 0) begin to interact with a large
density peak that occurs at the intersection of exclusion zones between the two polymer
strands. The location of this peak is a new site for fluidbinding.

Figures 14 and 15 show the development ofboundfluid molecules in the chain–chain
interaction region. In both cases,y= 4.625σ slices of the density distribution are shown. In
Fig. 14, the separation of the polymer strands isH/σ = 4.5 while in Fig. 15, it isH/σ = 3.5.
In the former case, four density peaks may be observed in thez= 0 plane. These peaks
represent fluid molecules bound in the bead–bead interaction annuli. In the latter case,
there are five density peaks. The first four are again in thez= 0 plane, corresponding to

FIG. 12. A slice at z= Lz of the density (ρσ 3) distribution in the solvation shell around two bead–chain
polymers, whereρbσ

3= 0.63 and the center–center separation of the strands isH/σ = 4.5.
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FIG. 13. Results for bead–chain polymers (solid lines) compared to cylindrical polymers (dashed lines).
Variables are the same as in Fig. 4 but are given per unit length (L/σ ) of the polymer chains. The infinite separation
limit was taken to be [Äs(∞)≈Äs(H = 7σ)]σ 2/AkT= 1.304, and the mesh spacing is fixed at1x= 0.125. The
solvation forces shown as solid and dotted lines were calculated usingfs=−∂Äs/∂H . The normalizing area for
the bead–chain model (whenL = 1.5σ ) is A= 20.5σ 2.

bead–bead interaction annuli. The fifth peak is found at the narrowest point of the interaction
region between the two chains. This fifth peak is of magnitude similar to that of the other
four, indicating that fluid molecules in this region are bound as strongly as the fluid in the
bead–bead interaction annuli.

When peaks 2, 3, and 5 are too close together, the unfavorable energy due to their
interaction (corresponding physically to overlapping electron clouds) causes the observed
numerical instability. The numerical instability arises physically from a local crystallization
(or binding) of the fluid particles. Local crystallization is not well resolved by our current
implementation because it is impossible for our direct solve on a fixed mesh grid using linear
basis functions to capture the steep density profiles that must approach delta functions.
The problem may also be exacerbated in our calculations by the application of Rosenfeld’s
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FIG. 14. An example of one slice (aty= 4.625σ ) of the density distribution in a hard sphere fluid near two
hard bead–chain polymers. The bulk fluid density isρσ 3= 0.63, and the center–center separation of the chains is
H = 4.5σ .

original functional, which is known to exhibit incorrect zero-dimensional crossover behavior
[16]. Due to numerical limitations, a Gaussian basis approach [17] may be needed for cases
where strong solvent localization is important.

Finally, we note that for all of the polymer models considered here, the osmotic exclusion
effect dominates with respect to self-assembly. Osmotic exclusion is maximized when the
surfaces are in contact with one another. Since the global free energy minimum is found, in
all cases, at the point of contact, it can be concluded that at equilibrium all of these model

FIG. 15. An example of one slice (aty= 4.625σ ) of the density distribution in a hard sphere fluid near
two hard–chain polymers. The bulk fluid density isρσ 3= 0.63, and the center–center separation of the chains is
H = 3.5σ .
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polymers would assemble in a hard sphere solvent with the minimum number of solvent
molecules between the polymer strands. Since the free energies of the interactions are given
per unit length (in units ofσ ) of the strand, the height of the free energy barriers (as well
as the depths of the wells) will ultimately be determined by the length of the chain.

6. SUMMARY

In this paper, we detailed the precision of a novel 2D and 3D nonlocal DFT code. We
applied this code to several polymer models in order to separate the effect of mesh spacing
on precision from the effect of mesh spacing on surface geometry. Using 2D models, we
showed that acceptable results (forces, free energies, adsorptions) can be obtained for mesh
spacings1x≤ 0.166̄σ .

We also have explored the effect of polymer geometry on the magnitude of solvation
forces. In all cases oscillatory solvation forces were found. However, the addition of sur-
face curvature and roughness were found to decrease the magnitude of the oscillations.
Calculations for the 3D bead–chain polymer model showed how the presence and location
of boundfluid molecules can be identified with this nonlocal DFT code. We found that in
the bead–chain model fluid atoms are always bound in the annuli around the points where
two beads on one chain meet. In addition, when two beads are close together, bound fluid
molecules are found in the interaction region between the polymer strands. At certain sep-
arations, solutions could not be obtained apparently due to unfavorable interactions of the
bound molecules. Molecular simulations are needed to understand the physical significance
of these numerical instabilities.

The results in this paper serve to demonstrate the power of this 2D/3D DFT code for
predicting the structure of solvation shells and the associated solvation forces, surface free
energies, and adsorptions in complex geometries. These calculations may be used to assess
the qualitative and quantitative differences between models (e.g., bead–chain vs cylindrical
polymers). They may also be used to estimate the importance of solvent structural forces in
comparison with other physical forces (e.g., electrostatic forces). Finally, the code may be
easily extended to complex surfaces ranging from biological macromolecules (e.g., proteins)
to porous materials (e.g., zeolites). Thus the DFT may be used in conjunction with more
traditional molecular simulations to elucidate the properties of solvated systems.
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