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In a previous companion paper, we presented the details of our algorithms for
performing nonlocal density functional theory calculations in complex two- and
three-dimensional geometries. We discussed scaling and parallelization, but did not
discuss otherissues of performance. In this paper, we detail the precision of our meth-
ods with respect to changes in the mesh spacing. This is a complex issue because
given a Cartesian mesh, changes in mesh spacing will result in changes in surface
geometry. We discuss these issues using a series of rigid solvated polymer models
including square rod polymers, cylindrical polymers, and bead—chain polymers. In
comparing the results of the various models, it becomes clear that surface curva-
ture or roughness plays an important role in determining the strength of structural
solvation forces between interacting solvated polymers. The results in this paper
serve as benchmarks for future application of these algorithms to complex fluid
systems. (© 2000 Academic Press

Key Words:density functional theory; solvation force; colloidal stability; DNA;
polymer; liquid crystals.

1. INTRODUCTION

Fluids near surfaces or macromolecules have properties (viscosity, density, etc.) that
significantly from the bulk properties of these fluids. Predicting the structure of fluids
confined spaces is ultimately critical for understanding adsorption in [1], solvation forces
[2, 3], and wetting [4] of complex surfaces [5, 6], macromolecules, and porous materials
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In Part | of this series [8], details of a novel numerical implementation of an accurate n
local density functional theory (DFT) were presented. These algorithms have enabled c:
lation of density distributions of fluids near complex surfaces that require two-dimensio
(2D) or 3D solutions. In this paper, we focus on the precision of the calculations us
solvated polymers to motivate the discussion. Calculations based on several model:
presented to address a variety of numerical issues that may affect the results. These |
include mesh refinement and precision, internal consistency (sum rules), and geon
change with mesh refinement. These issues are addressed in detail in Sections 3 and 4
2D polymer models. In Section 5, the results from 3D calculations are presented.

The particular nonlocal DFT we apply was detailed in Part I. Briefly, the DFT is bas
on the functional minimization of the grand free energy,with respect to the density
distributions,p (r), at constant temperatur€, and fluid chemical potentigl; [9]:

602
<8)0(r)>T,u ( )

The particular free energy function&] p(r)] we use was developed by Rosenfeld [10].

The principle outputs of the DFT calculation are the surface free er@fgthe solvation
force,f, and the excess adsorptidn, Boldface indicates a vector with= (f*, fY, f2).
These parameters are defined and calculated via

Q° = Q[p(n)] — Qlp], )

fs = /P(rs)n drs, (3)
and

r= /[p(r) — ppl dr, )

wherepy, is the bulk fluid density associated with the known [ drs indicates a surface
integral,n is the unit normal to the surface, arfdir indicates a volume integral. The net
force on a given surface is found by integrating over the fluid densities in contact with
surface (Eq. (3)). Since the integral is taken over the entire surface, the solvation forc
strictly zero when a surface is isolated in solution or when two surfaces are far apar
should be noted that the solvation force as expressed in Eq. (3) has already been speci
to the hard potential systems we consider in this paper.

One way to test the precision of the calculations is to test the self-consistency of the s
tions via sum rules [9]. While there are a variety of sum rules that apply to inhomogene
fluids, the one we consider here is the force sum rule. Assuming that the line of cen
between two surface lies in thedirection, the force in this direction is

Qs

fsx = /P(rs)nx drs = —E, 5)

whereD is the separation between the two surfaces.
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FIG. 1. A schematic of the three solvated polymer models of interest. Square rod polymers are shown ol
left, cylindrical polymers are shown in the center, and bead—chain polymers are shown on the right.

2. POLYMER MODELS

As in Part | we restrict the current discussion to hard sphere fluids in contact with h
surfaces. In the cases we discuss here, the surfaces are designed to model rigid poly
More specifically, the surfaces are small in two dimensions, but long and regular in
third. The stiffness of these models is not a realistic representation of many polymers
there are some important exceptions. One example is deoxyribonucleic acid (DNA).
double helix of the DNA causes this important polymer to be quite rigid. As a result, DN
has often been treated from a modeling point of view as a rigid polymer [11, 12].

The specific models we present here are square rod polymers, cylindrical polymers,
bead-chain polymers. The three types of models are sketched in Fig. 1. While the solv:
of square rod and cylindrical polymer models may be studied in 2D, the bead—chain poly
requires a 3D calculation. Sketches of the 2D and 3D computational domains are shov
Fig. 2. In the 2D cases, boundaries at both L, andy =L are reflective (see Part | for
a precise definition). In the 3D calculations the- Ly, z=0, andz= L, boundaries are
reflective. All remaining boundaries assume that the fluid surrounding the computatic
domain haso = pp. Given the reflective boundaries, the computational domain is clea
one quarter of the relevant physical domain, and the physical domain is composed of
polymer strands suspended in the hard sphere fluid.

3. SQUARE ROD POLYMERS

In Part I, we outlined a variety of numerical algorithms for solving the Euler—Lagran
equations of the DFT. We showed how such algorithms perform as a function of t
domain size and mesh spacing on a Cartesian mesh. However, we did not discuss i
of precision. In this section we present sensitivity studies and self-consistency tests
respect to mesh spacing for the square rod polymer. This model is unique in that the geor
of the polymer is invariant with respect to changes in mesh spacing. One example o
density distribution in the solvation shell around two square rod polymers is shown in Fig
where the surface separatiorDgo = 1.5. In all that follows, the mesh spacing is denotec
Ax with the understanding that this mesh spacing corresponds to the mesh zone adj
to the polymer surface (see Part | for a description of the mesh coarsening).

The surface free energy, tkRecomponent of the solvation force, and the excess adsorpti
are shown in Fig. 4, as a function of both the surface separation of two polymer stre
and the mesh spacing. In all casas varies from 025 to 0.025, whereo is the fluid
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FIG.2. Sketches ofthe computational domains used for (A) the 2D square-rod polymer, (B) the 2D cylindr
polymer, and (C) the 3D bead—chain polymer calculations. The minimum surface separation is indicBted |
while the center—center separation is indicatedHbyl' he shaded regions in (A) and (B) indicate exclusion zone:
of width 0.5¢, where no fluid is found due to hard core repulsions. The exclusion zones are omitted from (C)
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FIG. 3. The density po®) distribution in the solvation shell around two square rod polymers, wheré=

0.65andD/o =1.5.
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FIG. 4. (A) The shifted surface free energy per unit arg;(D) — Q°(c0)]/ A, whereQ%(co) ~ Q%(60).
(B) Thex-component of the solvation forcé,= f, per unit area. (C) The excess adsorption per unit area. Ea
panel shows results for mesh densities ranging from= 0.025% to Ax =0.25¢, as indicated in the legend. The
normalizing area is the total surface area (if%e= 120 x L) of one rod. The values &&*(60 )02/ AKT used for
(A) were 1.87,1.88, 1.92, 1.95, 2.01, and 2.15/0¢/0 = 0.025, 0.05, 0.1, 0.125 0.166, and 0.25, respectively.

molecular diameter. The solvation forceyjiis strictly zero due to symmetry and thus is not
shown. The surface free energy is shifted by the infinite separation limit. When shifted,
surface free energy is equivalent to the potential of mean force acting between the rods
14]. Thus the global minimum in Fig. 4A yields a prediction of the equilibrium separati
of the polymer strands.

All of the parameters in Fig. 4 show oscillations of periothat reflect solvent packing
constraints near the surfaces. The discontinuity that arigegat= 1 is the result of osmotic
exclusion of solvent from the gap between the surfaces. Since our fluid is a hard sp
fluid, no fluid molecules will fit in the gap when it is smaller tham ih size.

It should be noted that the discontinuity@fo =1 is a slope discontinuity for the free
energy and adsorption while it is a value discontinuity for the forceDXs — 1 from
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FIG.5. (A) The surface free energy per unit ar€d,/ A. (B) Thex-component of the solvation forcé,= .
(C) The excess adsorption per unit area from 1D calculations of a hard sphere fluid confined between hard p:
planar surfaces.

above, there will be nonzero densities at the noded_, andy > L, — 1.50 (see Fig. 2).
However, the density in the elements surrounding those nodes is strictly zero. Thus w
these nonzero densities contribute to the surface integral that yields the force, they d
contribute to the volume integrals of the surface free energy and adsorption. This poi
illustrated more precisely in Fig. 5, where the results of 1D calculations (based on mesh ¢
as small asrnx /o = 0.00025) of a fluid confined between smooth parallel planar surfac
are detailed.

There is good agreement among the results of all the mesh densities shown in Fi
The largest errors are found at the peaks in the force cubyer &1, 2, ...), where
f& is underestimated an@® is overestimated. The forces Bt/o =1 are not shown in
Fig. 4B. They arefXo3/AKT =89.518, 89.520, 89.490, 89.469, 89.429, and 89.208 fc
Ax=0.0250.05,0.1,0.125, 0166, and 0.25.

A test of the force sum rule for.025< Ax < 0.25 can be found in Fig. 6. The partial
derivative,0Q2%/9dD, was estimated numerically with central finite differences around tt
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FIG. 6. A comparison of the two methods for calculating the force where the solid lines indf¢cate
[ p(rs) drsand the symbols indicath = —9Q°%/9 D. The mesh density in the zone nearest the surface varies wi
Ax=0.025 (A), Ax=0.05 (B), Ax=0.1 (C),Ax=0.125 (D),Ax =0.166 (E), andAx = 0.25 (F). The dotted
line in (B)—(F) is theAx = 0.025 result using's =/ p(rs) drs.

points D + 0.5A D, where AD =2AX is the spacing between points in Fig. 4. Figure ¢
confirms that the free energy derivative in Eq. (5) gives a good estimate of the force ir
cases excephix = 0.250, where the spacing between successive data pakids=£ 0.50)

is too large for accurate numerical derivatives.

4. CYLINDRICAL POLYMERS

We now turn to the cylindrical polymers where the geometry of the polymer surfa
changes as the mesh is refined. As was discussed in Part |, the surfaces in our calcul
are defined by identifying each element in the solution domain as being either entirel
the fluid or entirely in one of the surfaces in the calculation. Since our mesh is Cartesian
curved surfaces are staircased, and the surface geometry will depend on mesh spacing
it is necessary to determine how sensitive the free energy, force, and adsorption predic
are to these geometry changes.

The calculations presented here are based on the computational domain of Fig. 2E
example of the fluid density in one quadrant of the solvation shell around two interact
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FIG. 7. The density po®) distribution in the solvation shell around two square rod polymers, wher
ppo® = 0.65 and the surface separation at the point of closest apprgaeh ) is D/o = 1.5.

cylinders is shown in Fig. 7. Note that the densities at the surface of the cylinder are
quite jagged due to the staircasing. Contrast this with the smooth density profiles at
surface of the square rod polymer in Fig. 3.

Figure 8 shows23, fs, andI" as a function of the surface separation of the cylinder:
Again, all of these parameters have oscillations on the periedidbwever, the amplitudes
of the oscillations infs and Q° are reduced in comparison with the square rods. Th
reduction in the solvation oscillations results from the surface curvature of the cylinder

One striking feature of Fig. 8 is the jagged nature of the force whén < 1. These
jagged peaks have the same origin as the single discontinuity observed for the square
However, in the case of the cylinders, all separatibris < 1 can show the discontinuity
because there is some element on the cylindrical surface that has a separation of exac
with the corresponding element on the opposing surface.

The slope discontinuities observed in Figs. 4B and 4@ At = 1 are not obviously
present in either th&s or I" curves in Figs. 8B and 8C. However, both of these paramete
are more sensitive to mesh density than was observed for the square rods. For exal
I is underestimated dD /o ~ 0.5 while the Qs is overestimated ab /o ~0.8 and 1.8
for the coarser meshes. In addition theurves in Fig. 8C required shifting for clarity of
presentation, as detailed in the figure caption.

Once again, the force sum rule was applied to test the self-consistency of the calculat
The free energy derivatives (see Eq. (5)) are shown in Fig. 9 for a variety of mesh spaci

Unlike the direct calculation (Fig. 8B), the free energy derivatives are not jagged
D/o < 1. Rather, all the different grids\(x < 0.165) give surprisingly consistent results.
Surface free energies on any of these grids may therefore be used to obtain an est
of the force for an infinitely refined mesh. Clearly, the surface integral in Eq. (5) is mc
sensitive to geometry changes with mesh spacing than are the volume integrals that are
to calculateRs.

Returning to the results in Fig. 8B, the magnitude of the jagged peaRgat< 1 de-
creases aax decreases. In the limikx — 0, we would expect these jagged peaks to dis
appear. One way to estimate this limit is to take the force to be the metnds — 1,)
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FIG.8. Same asFig. 4 exceptfor cylindrical rods. The normalizing area is the total surface area of one cyli
(i.e., A=120 x L). The values of2%(60)c?/AKT used for (A) were 1.46, 1.46, 1.47, 1.61, 1.48, and 1.94 fo
AXx/o =0.025 0.05, 0.1, 0.125 0.166, and 0.25, respectively. The excess adsorptibnsjere all shifted to the

limit of the Ax = 0.025 data for clarity of presentation. Before shifting, the limiting val_ues of the adsorptions we
l'o?/A=-0.197,—-0.191,-0.212,—0.171, and-0.223 forAx = 0.05, 0.1, 0.125, 0166, and 0.25.
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FIG. 9. A comparison of the solvation forcd = —092°%/dD, as a function of the surface separatibn
between parallel cylinders for a variety of grid spacings.



434 DOUGLAS FRINK AND SALINGER

0.7 7T T T T
r . Ax=0.025¢ | 1
0.5k . +  Ax=0.050 |-
a a  Ax=0.1c 1
r 3 e Ax=0.125¢ | 1
0.3+ o Ax=0.1660 § -

D/c

FIG. 10. The solvation force as function of the surface separation where the force is calculated v
fs=/[p(rs)drs, but for separations oD/o <1, the force is estimated withf =0.5 % [fs(d/o — 1,) +
fs(d/o — 1))].

and fs(d/o — 1_), whered is the surface separation associated with each surface elems
Mean force estimates for several mesh spacings are shown in Fig. 18xFer=0.025
and 0.05, there is good agreement between the mean force and the free energy deriv
For largerAx, the maximum in the first peak is overestimated. However, in all cases, t
estimate of the force is considerably closer to the infinitely refined mesh result than are
jagged forces in Fig. 8B.

5. BEAD-CHAIN POLYMERS

Finally, we consider the bead—chain polymers. For all the calculations presented be
the mesh spacing in the finest zone is taken take= 0.125 . The computational domain
in x includes two bead-chain polymer strands, as is sketched in Fig. 2C.

The bead—chain polymer model in Fig. 1 is qualitatively different from the square rc
and cylindrical polymers in that it is nonuniform in the axial direction. Thus, the solvatic
structure is complex in 3D. Figures 11 and 12 show densities in the solvation shells
rounding two bead-chain polymers in the plames0 andz = L, when the center to center
separation iH =4.50. Thez=0 slice corresponds the the point where two beads on
given chain meet and the surface separatidhis H. Thez= L, slice is thez plane where
the surface separation is smalld3t= H — 30. While the peak densities in tlze= L, plane
are comparable to square rod polymers and cylindrical polymers (see Figs. 3 and 7)
peak densities in the= 0 plane are significantly higher.

The large densities in Fig. 11 arise from the large fluid—surface interactions that oc
in the annulus around the point where two neighboring beads on a single chain meet.
fluids in these regions can be considered tdbandalthough they are not chemically
bonded to the polymer.

The complexity in the solvation structure has a significant effecfQi®2°, andrl’, as
shown in Fig. 13. While all the parameters show solvation oscillations, the amplituc
of the oscillations are reduced in comparison with both the parallel cylinders and sqt
rods. Thus, the additional surface roughness is a destructive factor with respect to s
tion forces. Surface roughness is a subtle issue that is beyond the scope of the cL
discussion; however, it has been shown that surface roughness may be either destructi
in the present case) or constructive with respect to solvation forces between rough pl
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FIG. 11. A slice atz=0 of the density fo®) distribution in the solvation shell around two bead—chain
polymers whergy,o® = 0.63 and the center—center separation of the stranklgds=4.5.

surfaces [15]. Thus one might obtain a different result if the size of the beads were incre
or decreased.

It should be noted that we were not able to obtain a solutioH at = 3.25¢ for the
bead—chain model. We observed that a numerical instability arises when the large den
found between neighboring beads on the same chaim&) begin to interact with a large
density peak that occurs at the intersection of exclusion zones between the two poly
strands. The location of this peak is a new site for fliiating

Figures 14 and 15 show the developmenbotindfluid molecules in the chain—chain
interaction region. In both cases=4.62% slices of the density distribution are shown. In
Fig. 14, the separation of the polymer strandd j& = 4.5 while in Fig. 15, itisH /o = 3.5.

In the former case, four density peaks may be observed iz h@ plane. These peaks
represent fluid molecules bound in the bead—bead interaction annuli. In the latter c
there are five density peaks. The first four are again iretad® plane, corresponding to

FIG. 12. A slice atz=L, of the density fo®) distribution in the solvation shell around two bead—chain
polymers, wherey,o® = 0.63 and the center—center separation of the strandgis=4.5.
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FIG. 13. Results for bead—chain polymers (solid lines) compared to cylindrical polymers (dashed line
Variables are the same as in Fig. 4 but are given per unit lehgth)(of the polymer chains. The infinite separation
limit was taken to be®®(o0) ~ Q(H = 70)]02/ AKT = 1.304, and the mesh spacing is fixedrat = 0.125. The
solvation forces shown as solid and dotted lines were calculated @isiag-022°/dH. The normalizing area for
the bead—chain model (whén= 1.50) is A= 20.502.

bead-bead interaction annuli. The fifth peak is found at the narrowest point of the interac
region between the two chains. This fifth peak is of magnitude similar to that of the ot
four, indicating that fluid molecules in this region are bound as strongly as the fluid in-
bead—bead interaction annuli.

When peaks 2, 3, and 5 are too close together, the unfavorable energy due to
interaction (corresponding physically to overlapping electron clouds) causes the obse
numerical instability. The numerical instability arises physically from a local crystallizatic
(or binding) of the fluid particles. Local crystallization is not well resolved by our curre
implementation because itis impossible for our direct solve on a fixed mesh grid using lir
basis functions to capture the steep density profiles that must approach delta funct
The problem may also be exacerbated in our calculations by the application of Rosenf
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FIG. 14. An example of one slice (at=4.625) of the density distribution in a hard sphere fluid near two
hard bead—chain polymers. The bulk fluid densityds = 0.63, and the center—center separation of the chains |
H=45¢c.

original functional, whichis known to exhibitincorrect zero-dimensional crossover behav
[16]. Due to numerical limitations, a Gaussian basis approach [17] may be needed for ¢
where strong solvent localization is important.

Finally, we note that for all of the polymer models considered here, the osmotic exclus
effect dominates with respect to self-assembly. Osmotic exclusion is maximized wher
surfaces are in contact with one another. Since the global free energy minimum is foun
all cases, at the point of contact, it can be concluded that at equilibrium all of these mc

FIG. 15. An example of one slice (af=4.62%) of the density distribution in a hard sphere fluid near
two hard—chain polymers. The bulk fluid densityois® = 0.63, and the center—center separation of the chains i
H =3.50.
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polymers would assemble in a hard sphere solvent with the minimum number of sol
molecules between the polymer strands. Since the free energies of the interactions are
per unit length (in units o) of the strand, the height of the free energy barriers (as we
as the depths of the wells) will ultimately be determined by the length of the chain.

6. SUMMARY

In this paper, we detailed the precision of a novel 2D and 3D nonlocal DFT code. '
applied this code to several polymer models in order to separate the effect of mesh spe
on precision from the effect of mesh spacing on surface geometry. Using 2D models,
showed that acceptable results (forces, free energies, adsorptions) can be obtained for
spacingsAx < 0.166¢ .

We also have explored the effect of polymer geometry on the magnitude of solva
forces. In all cases oscillatory solvation forces were found. However, the addition of <
face curvature and roughness were found to decrease the magnitude of the oscillal
Calculations for the 3D bead—chain polymer model showed how the presence and loc:
of boundfluid molecules can be identified with this nonlocal DFT code. We found that
the bead—chain model fluid atoms are always bound in the annuli around the points w
two beads on one chain meet. In addition, when two beads are close together, bound
molecules are found in the interaction region between the polymer strands. At certain
arations, solutions could not be obtained apparently due to unfavorable interactions o
bound molecules. Molecular simulations are needed to understand the physical signific
of these numerical instabilities.

The results in this paper serve to demonstrate the power of this 2D/3D DFT code
predicting the structure of solvation shells and the associated solvation forces, surface
energies, and adsorptions in complex geometries. These calculations may be used to
the qualitative and quantitative differences between models (e.g., bead—chain vs cylind
polymers). They may also be used to estimate the importance of solvent structural forci
comparison with other physical forces (e.qg., electrostatic forces). Finally, the code ma
easily extended to complex surfaces ranging from biological macromolecules (e.g., prote
to porous materials (e.g., zeolites). Thus the DFT may be used in conjunction with nr
traditional molecular simulations to elucidate the properties of solvated systems.
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